Project Plan

Unified Butterfly Recorder iOS — May1614

MaTT MCKILLIP
MASON BERHENKE
BLAKE BURNS
DJ TobD
KyLE LONG
YU JIN
ERIC SOLAND

ADVISOR: DR. DIANE ROVER
CLIENT: NATHAN BROCKMAN
TeEAM WEBSITE: HTTP://MAY1614.SD.ECE.IASTATE.EDU/

Contents

1__Introductionl
[1.1 Background and Problem|
I Dofmitiond

[1.2.1 Surveys and Survey Protocols|.

3 Market Analysis|
3.1 Survey Database| 0 .
3.2 Competitors|.

4 System Requirements|

4.1 Primary Requirements|
[£:2" Secondary Requirements|
43 on-Functional Requirements|
4.4 Resource Requirements|,
[Proposed Solution and Assessment]
.1 Swift Language| 0oL
b2 Realms foriOSl o
Isi,;i I ;!I: g: :‘ZDI;I
[>.4 Android Wear SDK and WatchKit (Tentative)]
[5.5 Open Source Swift Libraries| v oo v v v
5.5.1 MapKit]
P.6 OpenWeatherMap|
...............................
6 Valdah; [Verification Planl
6.1 Fall 2010].
6.2 Spring 2016

7 System Structure|

19 Risk and Mitigation Strategies|
9.1 Feasibility Analysis|. o oo

10 Conclusionl

[11 Current Project Status (Updated 11/17/2015)|

|1 1.1 Development|

[12 Similar Applications|
[12.1 Wildlife or Animal Tracking Apps|
12.2 General Mapping and Geo-location Apps|

15
15

16

17
17
17

1 Introduction

1.1 Background and Problem

Originating in January of 2013, the first Unified Butterfly Recorder (UBR)
team set out and created a mobile application on Android that enhances data
collection during butterfly surveys. By using a mobile application instead of
filling out paper forms, it is possible to easily gather information from across
the world and analyze it much more quickly. The third UBR team is currently
working on setting up the tools necessary to unify the application’s data storage
in a central server, storing worldwide information in a single location. Their
central server will allow organizations of all sizes to easily upload and view
survey data from other teams using the app.

The problem our UBR team has been faced with is to create an iOS version
of the existing UBR Android application, and to implement all of the new data
sharing services that UBR3 is currently adding.

1.2 Definitions

Please note the following definitions, as they will be used throughout the rest
of this document.

e Sighting - Records about a particular butterfly.

e Survey - A group of sightings and records about the environment of those
sightings.

e Organization - A group of “MyUBR” users. Certain members of an or-
ganization may be able to see surveys uploaded by other members of the
organization.

e Partner - A third party with whom individual users and organizations
have chosen to share survey data with.

1.2.1 Surveys and Survey Protocols

Together, the existing mobile apps provide an excellent platform for gathering
butterfly survey data. The mobile apps allow users to create various types of
surveys. The type and method of data collection during a survey is dictated
by protocols. Each protocol is designed to answer a specific type of research
question. There are many protocols used today, including the following:

e Presence-Absence - Simply record whether a particular species has been
sighted in an area.

e Distance Sampling - Record the distance of sightings from a specific line
or point transect in order to estimate local distribution and abundance.

e Meandering Survey - This protocol involves individuals or groups walking
an indeterminate path looking for as many individuals as they can find.

e Pollard Walk - A surveyor repeats an identical transect (route) different
times over the course of years, recording sightings visible within a specific
range of the path, aiming for consistency of recording.

The mobile apps allow users to create and save surveys according to each of
those protocols.

1.3 Objective

By referencing the existing UBR, application on Android, our objective is to
create an i0S application that will have all the same functionality while also
adhering to the iOS design principles. Along with implementing current func-
tionality, our goal includes working with the UBR3 team to implement the new
ability of uploading survey data to a central server.

2 Deliverables

In order to accomplish the objective described above, we plan to focus on one
primary deliverable with a few secondary deliverables, should we reach all nec-
essary checkpoints ahead of time.

2.1 UBR for iOS

Our primary deliverable will be an iOS app that will have all available features
of the current UBR app for Android. In addition to the features of the Android
app, we will also need to incorporate a new back end web service supplies by
the UBR 3 team which will back up and record all surveys, as well as handle
user authentication. In order to show that this has been delivered, the app must
pass Apple’s app screening process and be given the go ahead to be released on
The App Store.

2.2 Secondary Deliverables: Android and wearable sup-
port

Should the team be able to accomplish the above deliverable ahead of time or
without the aid of all team members, secondary deliverables such as updating
the Android UI and implementing a wearable version of UBR may also be
completed.

2.3 Android

With the current UBR app on Android already being functional, most changes
made to the app will be cosmetic. Creating a more user friendly and modern
interface that will help users understand the primary purposes behind the app.

2.4 Wearable

In addition the the deliverables described above, we may also create a wearable
interface for hands free surveys. This will be implemented on an Android based
watch because Android watches work with both Android and iPhone users and
will thus hit a larger portion of the market.

3 Market Analysis

Our target audience are scientists who are interested in surveying butterflies.
Many surveyors still use pen and paper to track their data. The UBR app will
allow these surveyors to record their findings quicker than paper, and eliminate
the need to manually input the data to a computer. By using the UBR app,
the user will also be able to take advantage of its cloud features to upload their
data and view data on the database.

61 percent of US citizens have smartphones, and the number keeps growing.
Many surveyors will already have a smartphone available. The ability to more
quickly and easily manage their surveying data will entice them to download
the UBR app. A well liked Android app already exists. Many more want to
adopt the product, but do not have an Android phone. By creating an i0OS app,
more users can have the chance to use the UBR app.

3.1 Survey Database

UBR 3 is currently developing a backend to store and utilize surveying data. By
hooking the iOS app to these endpoints, it will enable surveyors to easily store
and share their finding to others. This database will follow the BAMONA’s
design specifications to work well with their butterfly and moth database. The
Android group has already determined which data fields that surveyors are
interested in, and the iOS app will follow that model.

3.2 Competitors

The Google Play store and Apple App Store have surveying apps. Android
apps, such as Magpi have outdated Ul, and don’t seem to focus on the speed
of data input. The UBR apps main focus is to make data entry as quick and
easy as possible. These feature will be a strong advantage against the current
market.

4 System Requirements

Many scientists and citizen scientists around the world will use the UBR iOS
app to survey butterflies. It is important that this iOS app is intuitive and
easily understood to reduce time to train in using it. This app should also be
convenient to use, so citizen scientists will be more likely to survey butterflies.

If the requirements change, this section will also. Reiman Gardens retains
the rights to change the requirements as necessary.

4.1 Primary Requirements

e App must store at least 1000 sightings without access to wifi, or mobile
data to send information to database.

e It should take less than 15 min for a novice to become comfortable using
this app, at least for basic surveys.

e It should take less than 15 seconds once the app is open to do a survey on
a single butterfly.

4.2 Secondary Requirements

e Upgrade app to include voice to text for butterfly names with the correct
species getting in the top 4 options at least 95 percent of the time.

e Modify current android app to be more similar to iOS app.

4.3 Non-Functional Requirements

App should look interesting and pleasant while following iOS design standards.
A survey may need to be used to confirm this abstract requirement.

4.4 Resource Requirements

App must work on at least 95 percent of iOS phones on the market, at least as
of September 2015.

e Development Tools

— XCode
— GitHub

Trello

e Mac computers

Slack chat

5 Proposed Solution and Assessment

5.1 Swift Language

Swift is the latest language by Apple used to create iOS apps. Multiple avenues
were looked at including some application builders such as HerokuApp, but

these were rejected due to the poor performance of such apps. While we could
have used Objective-C and Apple’s Cocoa framework, Swift is a new modern
language that is easy to pick up and allows for powerful app development. Since
it is easy to learn, we can spend less time with learning curves and more time
in development. Objective C will be used when necessary however.

5.2 Realms for iOS

Realms for i0OS is a mobile database library. Unlike Sqlite, Realms is object
oriented, making it easy to manage and maintain in code. Realms targets Swift
2.1, but will also work with 2.0 and 1.2. Since this UBR iOS app is being
started from the ground up, we can use Realms with Swift 2.1. Using Realms
will further allow us to focus more on the product rather than technical hurdles.

5.3 Parse SDK

To be able to work with the UBR Server Project Plan, we will be using Parse
SDK to easily access the database. Since this is an outside requirement, we
don’t have much say in how we will be accessing this. Thankfully the UBR3
team is optimizing this.

5.4 Android Wear SDK and WatchKit (Tentative)

If the wearable stretch goal is met, we will most likely be using the Android Wear
SDK in order to create an easy user experience with Android smartwatches.
Swift’s version of Android Wear is WatchKit, which is easily integrated with
Swift.

5.5 Open Source Swift Libraries
5.5.1 MapKit

The Map Kit framework provides an interface for embedding maps directly
into your own windows and views. This framework also provides support for
annotating the map, adding overlays, and performing reverse-geocoding lookups
to determine placemark information for a given map coordinate.

We will use this framework to provide a visual representation of the users
survey. Based on our clients feedback, this is a very useful and important
deliverable.

5.6 OpenWeatherMap

OpenWeatherMap is a service that allows developers to easily add weather infor-
mation to mobile applications on both Android and iOS. The weather informa-
tion returned includes temperature, humidity, cloud coverage, wind speed /direction
and a precipitation forecast. It is very lightweight since it won’t require us to
install anything on our app, we will simply use an HTML GET call based on

the user’s location to request weather information from the OpenWeatherMap
APL

5.7 OpenEars

The OpenEars framework provides an easy to use SDK to work with voice
recognition on an iOS app. It is written in Objective C and can interface with
Swift. It also adds the capability of using offline voice chat to allow surveyors
without data connection to still use the service. How reliable this is when it
comes to scientific names requires some research.

6 Validation and Verification Plan
6.1 Fall 2015

Our primary goals for our first semester are to research UBR1 and UBR2’s
applications, gather requirements, and spend time researching and learning iOS
development. To achieve these goals we will be in constant communication with
our clients at Reiman Gardens, our advisor, and the past UBR senior design
teams. We will need to make sure we consider all parties when gathering the
requirements

Our plan is to meet biweekly with our clients at Reiman Gardens to ensure
our client is happy with our requirements and able to give us additional feedback
for additional requirements. Due to our large team, we will be meeting with
our advisor in a set of two meetings to get feedback on our progress. Finally, to
meet with past teams, we will be hosting Google Hangouts when necessary.

We plan on developing prototype applications based on the requirements we
have gathered so far. We will discuss the prototypes during our meetings so we
can improve our requirements based on the feedback received.

Holding frequent meetings will help us gather strong requirements for our
application development.

6.2 Spring 2016

Once we have gathered our requirements, we will begin developing our final
application. Our team will have two methods of validation and verification.
The first will be presenting the client with our current application every two
weeks. The second method will be using test-driven development principles.
We will be developing using the Agile methodology. The agile methodology
requires that work be completed in a series of sprints, which our team has
decided to be two weeks in duration. At the beginning of each sprint we will
decide which requirements need to be implemented or updated in the code.
Each requirement will be represented as a user story on our Trello board. A user
story helps keep the use case, goal, and requirements in mind when developing.
Trello is an online collaboration board that will hold our user stories. Once the
sprint is over, a retrospective meeting will be held between our team and the

clients, to ensure that any new functionality is implemented correctly and that
the system still fulfills the requirements. This process will help ensure that the
client is happy with the direction of the development, and allow the client to
alter their requirements if needed. The Agile methodology can be seen below:

Agile
Methodology

2
2

e

Our second method of validating our requirements will be using test-driven
development. Test-driven development is a software development process where
a developer writes unit test cases before writing code, then will write the code
until all of the unit tests pass. Test-driven development process provides the
benefit of significant reduction in bugs, built in requirement verification, and a
lower development time. We have also connected our code with a Continuous
Integration server. The server will build and run our unit tests every time the
code is pushed to the repository as well as every night. Our team will benefit
by immediately seeing if the code they pushed caused bugs in the application.

Our two methods of validating and verifying our requirements have been set
up during the fall semester, and will hopefully allow us to provide our clients
with a high value product, by the end of the spring semester.

10

7 System Structure

From an app standpoint, i0S is strictly held to an MVC design pattern: it is very
difficult to stray away from this when coding for application (regardless of using
Swift or Objective C). An example of how MVC works in i0S is shown below.

Update

User action

UlTableViewController

Update

gproperty (nonatomic, retain) NSString stitle;
gproperty (nonatomic, retain) NSString =author;

2001: A Space Odyssey gend

Dune

Ender's Game

Fahrenheit 451

Foundation

Hitch Hiker's Guide 1o the Galaxy
Neuromancer

Starship Troopers

Stranger in a Strange Land

R s

The entire app as a whole will consist of Swift and Objective C libraries working
hand-in-hand with our own code. This app will then communicate with several
cloud services that we will not have a part in coding such as the currently in
progress UBR Server. There will also be ways to export the data as well as sev-
eral external API calls to applications such as weather. Below is an image repre-
sentation with specifications as to what type of data is sent/received by services.

11

UBR Server
(Parse)

Surveys,
Login Info

Surveys, Custom
Lists, Pictures,...

Backup
Services (e.
g. iCloud)

UBRiOS

3rd Party Libs

UBR4 Code

o o] |t | oo o]

N —

Realms

“ External APls

Custom
Lists,
Pictures

Email, Other
Cloud Services
(e.g. Google
Drive, Box)

12

Surveys,
Pictures

8 Work Breakdown Structure

8.1 Team Structure

With this big of a team, we will be splitting into sub-teams, each of which have
specific deliver ables. There will be sub-team leaders as well for each deliverable,
and these may change depending on the sprint.

8.1.1 Overall Team Structure

Member

Position

Mason Berhenke
Blake Burns

DJ Todd

Yu Jin

Matt McKillip
Eric Soland
Kyle Long

Team Leader
Communications Leader
Key Concepts Leader
Webmaster

Core Team Developer
Core Team Developer
Core Team Developer

8.1.2 Sub-Teams

Core i0OS Team

Member Key Component
Blake Burns Key Survey Data (e.g. weather)
DJ Todd UI Flow of Application

Matt McKillip
Eric Soland
Kyle Long

Visual representation of survey
Exporting data from the phone
iOS Realms - Data Management

Innovation Team

Member

| Key Component

Mason Berhenke
Yu Jin

Voice recognition and research on iCloud usage
Importing CSV lists to i0S

13

8.1.3 Team Experts

Member

Topic

Mason Berhenke
Blake Burns

DJ Todd

Yu Jin

Matt McKillip
Eric Soland
Kyle Long

Innovation

Swift Language

User Interface

Agile Methodology
Testing in i0OS
Repository (Github)
Parse database language

8.2 Current Time line

Date/Time span

Milestone

August - October
October 15th
October 26th
November 9th
November 20th
December 1st
January 15th

January 30th
February 29th

Define Project, Deliver-ables, and Sub-
teams.Learn Swift basics individually.

Basic website done, fully functional.UI looks
secondary priority

All members have full understanding of sur-
veys.

Pre-alpha layout. Hello World Apps and Basic
Swift Understanding Done

Basic app (buttons, layout, flow), testing in-
frastructure

Individual prototype apps completed
Integrate individual prototype apps

Working ‘bare bones’ prototype

Application released for beta testing

14

9 Risk and Mitigation Strategies

Risk

Mitigation Strategies

Unable to complete wearables
app.

Unable to complete core applica-
tion functionality.

Focusing on side stories rather
than the main stories

Start coding too late

Code Reviews

Design Architecture leading to
un-maintainable code

Feature creep

No unit tests

Have two teams, one focused on innova-
tion and one focused on core app func-
tionality.

Have two teams, one focused on innova-
tion and one focused on core app func-
tionality.

Frequent meeting with clients, advisor’s
and in-between team members to dis-
cuss on what should be done for the
duration.

Decide on what to do and set a time
limit for it.

Assign people to read up on code and
using slack to run the program daily.
Follow standard iOS MVC design pat-
tern.

Prioritize features by importance, and
assign features to team members

Code reviews and builds before submit-

ting code to source control

9.1 Feasibility Analysis

All members of our team are seniors in software or computer engineering. While
only 2 have any experience with iOS design, the whole team have started on
coding early by creating a basic hello world app with iOS and reading up on
iOS design. Thus, while it will be a learning experience for the team, everybody
is committed to completing the project.

The project itself can be accomplished in the time allotted to us. For the
first semester, we will focus on reading up on iOS design and learning the basics
of the i0S design. Tasks are also assigned to every team member. This tasks are
related to functions that we want to be used on the app. A basic implementation
of each function will be completed by the end of Fall 2015 semester.

For the Spring 2016 semester, using UBR1 Android application as a refer-
ence, all our individual codes will be compiled together and added to a iOS
UBR app. If time permits, further innovations will be added to the iOS app
that will be extension of what the Android app have and updating the Android
app to the same level of functionality of the iOS app.

15

10 Conclusion

The completion of this project will greatly increase the number of UBR, users.
Organizations have been waiting to adopt the UBR Android app until a partner
iOS version comes out. Having more organizations on UBR is very exciting
because it will increase the amount of data collected from surveys. When the
iOS version is complete, the amount of surveys on UBR will greatly improve
the research being done on butterflies in the United States, and throughout the
world.

16

11 Current Project Status (Updated 11/17/2015)

11.1 Development

Currently each member of the team is working on an individual prototype for
our application. We have set a due date of 12/1/2015 for each member to
present their findings and their progress. The prototypes each member have
been working on can be found in the team structure table. Once we have
individually developed a feature, we will start the integration process, which we
hope to have done at the end of the semester.

11.2 Team Infrastructure

Our team has also been working very hard to get our development infrastructure
up and going. Our team has created a Github repository for our code. We have
also started mapping our development using Trello. Additionally we have all
started using Slack, which is an integrated messaging application. We have set
up automated messages for whenever code is pushed to the repository, a card is
moved in trello, or our code is build in Bitrise. Bitrise is a continuous integration
server we have set up that builds our code on a virtual machine and runs all of
the tests. We have set up for this to happen every time a commit is pushed to
the dev branch and also every night. Bitrise will help us catch errors early in
the development process.

17

12 Similar Applications
12.1 Wildlife or Animal Tracking Apps

e Bugs count

e Record Wildlife

o Wildlife Log

e Africa: Live

e Sightings Tracker

e Bird Atlas Recording Softwar

e Kruger Park Sightings

12.2 General Mapping and Geo-location Apps
e GPS Grid Reference

e GPS Waypoints Navigator
e Gmemo for Field Survey
e Gmemo Survey

e GIS4Mobile

e 2GIS

e Maverick

e Path Tracking

18

	Introduction
	Background and Problem
	Definitions
	Surveys and Survey Protocols

	Objective

	Deliverables
	UBR for iOS
	Secondary Deliverables: Android and wearable support
	Android
	Wearable

	Market Analysis
	Survey Database
	Competitors

	System Requirements
	Primary Requirements
	Secondary Requirements
	Non-Functional Requirements
	Resource Requirements

	Proposed Solution and Assessment
	Swift Language
	Realms for iOS
	Parse SDK
	Android Wear SDK and WatchKit (Tentative)
	Open Source Swift Libraries
	MapKit

	OpenWeatherMap
	OpenEars

	Validation and Verification Plan
	Fall 2015
	Spring 2016

	System Structure
	Work Breakdown Structure
	Team Structure
	Overall Team Structure
	Sub-Teams
	Team Experts

	Current Time line

	Risk and Mitigation Strategies
	Feasibility Analysis

	Conclusion
	Current Project Status (Updated 11/17/2015)
	Development
	Team Infrastructure

	Similar Applications
	Wildlife or Animal Tracking Apps
	General Mapping and Geo-location Apps

